Python: Pandas Intro (Dataframes)

Before we continue onto Dataframes, I want to clear up something from the Series exercise. Note the line (from pandas import Series, DataFrame)

pandas1

Using that line, I can call upon Series or DataFrame directly in my code

pandas2

In this example below, I did not directly import the methods Series and DataFrame, so I when I tried x = Series() I go an error.

I had to use the full method name of pd.Series() for this to work.

pdDF

DataFrame

DataFrames provide another level of data management for Python. Those of you who come from a more data driven background with appreciate DataFrames.

Let’s start by creating dictionary.

pdDF1.jpg

Now, pass the dictionary to the method DataFrame()

Note, now you have a table looking structure with named columns

pdDF2

You can call up a list of indexes or columns using the methods below:

pdDF3.jpg

DataFrame.info() will return a summary of your DataFrame

pdDF4

Head and Tail

Create a new DataFrame from a dictionary

pdDF5.jpg

If you want just see a few of the first elements, you can use the head() method

pdDF6

The tail() method does the last few. You can even choose how many rows you want.

pdDF7

Describe

The describe() method gives you some quick statistics on any numeric column

pdDF8.jpg

Slice

You can slice a DataFrame just as you would a list

pdDF9

Choose What to Display

DataFrames allow you to filter what rows to display by value or column

pdDF10

There is a lot more you can do with Series and DataFrame in pandas, and we will be covering them in later lessons. For now though, I think you have a general idea.


If you enjoyed this lesson, click LIKE below, or even better, leave me a COMMENT. 

Last Lesson: Pandas Series

Next Lesson: Working with DataFrames

Return to: Python for Data Science Course

Follow this link for more Python content: Python

 

One thought on “Python: Pandas Intro (Dataframes)

  1. Pingback: Python for Data Science – Analytics4All

Leave a Reply